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Tutorial

With modern software tools, there has been a surge in 
the number of methods and tools through which 
researchers and clinicians can perform data visualization, 
an important skill in scientific research. For instance, R, 
a programming language (R Core Team, 2021), has 
become exponentially prevalent for statistical data visu-
alization in the last 15 years in part because of ggplot2, 
a plotting library that was introduced in 2009 by Hadley 
Wickham (2009). Its citation count has towered over that 
of Python’s matplotlib (see Fig. 1), an extensive, flexible, 
but challenging low-level plotting library that was first 
introduced by John Hunter in 2007 (Hunter, 2007). The 
reason for the recent rise of ggplot2 is that the library is 
free, open-source, and intuitive for users. Layers of 
graphics can be added sequentially on a plotting space 
to produce complex plots. The details of the philosophy 
behind ggplot2, which is better known as the “grammar 
of graphics,” are well explained in a tutorial in this jour-
nal (Nordmann et al., 2022). In brief, as long as users 
know how to add a layer of points, a layer of lines, and 

other specific layers sequentially using ggplot2’s declara-
tive syntax, they will be able to plot their data in both 
simple and complex fashions with a high level of cus-
tomization without applying the programmatic approach, 
such as creating loops and functions (Hehman & Xie, 
2021). Furthermore, because of the active community of 
users, there exist diverse third-party R packages (Mow-
inckel & Vidal-Piñeiro, 2020; Patil, 2021; Tang et  al., 
2016), which complement ggplot2, that provide shortcut 
functions for plotting, allowing users to plot data in just 
a few lines of codes in wide-ranging ways. These factors 
have made R, rather than Python, a preferable tool for 
data visualization for researchers and clinicians across 
disciplines and levels of experience.
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Abstract
In psychology and human neuroscience, the practice of creating multiple subplots and combining them into a composite 
plot has become common because the nature of research has become more multifaceted and sophisticated. In the last 
decade, the number of methods and tools for data visualization has surged. For example, R, a programming language, 
has become widely used in part because of ggplot2, a free, open-source, and intuitive plotting library. However, despite 
its strength and ubiquity, it has some built-in restrictions that are most noticeable when one creates a composite plot, 
which currently involves a complex and repetitive process with steps that go against the principles of open science out 
of necessity. To address this issue, I introduce smplot2, an open-source R package that integrates ggplot2’s declarative 
syntax and a programmatic approach to plotting. The package aims to enable users to create customizable composite 
plots by linearizing the process of complex visualization. The documentation and code examples of the smplot2 package 
are available online (https://smin95.github.io/dataviz).
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Built-In Restrictions of ggplot2

In psychology and human neuroscience, the practice of 
creating multiple subplots and combining them into one 
composite plot is common (Kubilius, 2014). This method 
of data visualization is known as “subplotting.” In the last 
few decades, it has become more widespread as research 
has become increasingly sophisticated, as demonstrated 
by the recent trend of including more variables and con-
ditions in experiments, conducting collaborations with 
other laboratories if possible, and implementing multiple 
methodologies for data collection and analysis (Lin & Lu, 
2023). These, in turn, create data sets with complicated 
structures, thereby requiring complex forms of data visu-
alizations. However, as a high-level plotting library—
which does not require users to plot each detail of the 
plot separately—ggplot2 has some built-in restrictions that 
are most noticeable when one creates a composite plot.

Currently, creating a composite plot in ggplot2 is com-
plex for several reasons. First, although ggplot2 allows 
for flexible customization of individual plots with con-
cise codes, it is not compatible with the most well-
known programmatic approach—iteration using a for 
loop—unless unorthodox methods are used. Conse-
quently, users unfamiliar with proper methods may 
struggle with applying iterations in ggplot2.

Second, ggplot2 provides limited options for subplot-
ting. A typical ggplot2 operation returns a single plot 
object that can be easily manipulated or stored. Although 
facet_wrap() and facet_grid() support data alloca-
tion into multiple subplots (facets) within a single plot 
object, ggplot2 limits aesthetic customization of these 
subplots within a faceted plot. For example, assigning 
subsets of data to different subplots using multiple or 
hierarchical variables or applying dynamic color schemes 

for each variable level is challenging. To circumvent this, 
users might need to restructure their data frames to 
visualize data as intended, but this affects only compo-
nents that map data variables to aesthetics, not elements 
such as axis limits, background themes, or coordinate 
systems.

For plotting unique visual elements that have no rela-
tion to the given data across panels, a third method has 
been used. It involves combining separate ggplot2 plot 
objects into one composite figure using libraries such 
as cowplot (Wilke, 2019) and patchwork (Pedersen, 
2019). This method enables users to draw a composite 
plot flexibly but requires them to code each subplot 
separately (see Pseudocode 1), resulting in repetitive 
scripts, albeit with minor differences (compare Plot 1 
and Plot 8 in Pseudocode 1). In addition, this approach 
restricts the aesthetic control of the composite figure, 
such as its layout, annotations (including legends), and 
marginal space (see Fig. 2), further encouraging users 
to code each subplot individually.

Put together, although ggplot2 has enjoyed its wide-
spread user base, for visualizing a composite plot, users 
have had to write repetitive scripts, seek third-party 
packages, or resort to a vector graphics editor, straying 
from the recommended practices for scientific 
reproducibility:

# Pseudocode 1: Composite plot in Figure 2 
using ggplot2

# Generate each plot separately
plot1 <- ggplot(data = <DATA>) +
 <GEOM_FUNCTION>(mapping = 

aes(<MAPPINGS>)) +
. . . +
<THEME_FUNCTION>(<LESS SPACING>) + # 

unique for this panel
<THEME_FUNCTION>(<REMOVE X-TICKS>) + # 

unique for this panel
<ANNOTATE_FUNCTION>(<TEXT, SHAPE 

ANNOTATIONS>)
# Repeat for plot2, plot3, . . .. , plot7

plot8 <- ggplot(data = <DATA>) +

 <GEOM_FUNCTION>(mapping = 
aes(<MAPPINGS>)) +

 . . .
<THEME_FUNCTION>(<LESS SPACING>) +
<THEME_FUNCTION>(<REMOVE X-TICKS>) +  

# unique for this panel
<THEME_FUNCTION>(<REMOVE Y-TICKS>) +  

# unique for this panel
<ANNOTATE_FUNCTION>(<TEXT, SHAPE 

ANNOTATIONS>)
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Fig. 1. Year-to-year citation count of two major plotting libraries in 
R and python: ggplot2 and matplotlib. The year 2024 shows a partial 
count of the citations. Each point denotes the time point when the 
authors have published an article regarding their software. Citation 
counts were collected from Google Scholar on April 4, 2024.
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Fig. 2. A comparison of the standard routines for subplotting in between matplotlib from Python and ggplot2 from 
R. In Python, it is standard to generate multiple panels using iterative or functional programming approach. After the 
plots have been combined, the specific aesthetics of the composite plot, such as the number of rows and columns, the 
common legend, and x-axis and y-axis labels, can be adjusted without modifying the individual plots. Furthermore, it 
provides a full flexibility for text, shape, and other types of annotations to be added on the combined image. The process 
of visualizing a composite plot is linear in Python’s matplotlib given its clear starting and ending points. However, in 
R’s ggplot2, the process often requires users to go back and forth between the stages of creating individual plots and 
then combining them. Users are encouraged to plot one graph at a time and then combine all plots together as late 
as possible. The goal of smplot2 is to simplify the process of complex data visualizations by resolving these issues.
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library(<THIRD_PARTY_PACKAGES>)

multi_plot <- <COMBINE_FUNCTION>(plot1, 
plot2, plot3, plot4, plot5,

plot6, plot7, plot8)

# Check if the multi_plot looks OK. If 
not, revise the codes that generate each 
plot.

On the other hand, the workflow for subplotting and 
creating a composite plot is simpler and more concise in 
Python’s matplotlib because it requires programmatic 
approaches such as building loops (see Pseudocode 2) 
and custom functions. Applying a programmatic approach 
ensures a full flexibility for graphical aesthetics because 
users can then allocate subsets of data to unique panels 
using any number and combinations of variables and 
dynamically control the aesthetics, such as color, without 
writing repetitive scripts:

# Pseudocode 2: Composite plot in Figure 
2 using Python’s matplotlib

fig, ax = plt.subplots(nrows = 2, ncols = 
4, sharex = True, sharey = True)

for <PLOT INDEX> in range(<NUMBER OF 
PLOTS>): # 8 iterations

 ax[<PLOT INDEX>].<PLOTTING_
FUNCTIONS>(<DATA>, <COLOR>)

fig.subplots_adjust(hspace = 0.2, wspace = 
0.1) # more spacing between rows than 
columns

fig.text(x = 0.5, y = 0.95, ‘Title of a 
Composite Figure’)

The first line of Pseudocode 2 determines the struc-
ture of the composite figure. The data themselves are 
plotted within a for loop at each panel, iterating for the 
length of the total number of subplots (eight total; see 
Fig. 2). Because of the programmatic approach, the color 
and other aesthetics in the plot for each panel can be 
different, yielding more flexibility. In addition, although 
the codes that generate the panels are identical, the 
panels actually look different from one another; some 
have y-axis ticks or x-axis ticks (or both; see Fig. 2) 
because the layout of the combined figure has already 
been established in the beginning. Furthermore, the aes-
thetics of the composite figure can be controlled, such 
as the amount of blank space between panels (hspace 
and wspace in Pseudocode 2). Finally, after the panels 
have been combined, a common legend and annotations 
(texts, shapes, points, patches, lines, etc.) can be added 

anywhere in the composite figure. In short, matplotlib 
offers flexibility both at the level of each panel and the 
composite figure, making it possible for the workflow 
of generating a composite plot to be linear, with its clear 
start and resolution. This versatility of control and a 
structured workflow for performing complex visualiza-
tions are missing in ggplot2.

A Need for a Solution: smplot2

Although the grammar of graphics interface in ggplot2 
simplifies the code for a standalone figure, it can com-
plicate the workflow when multiple ggplot2 outputs are 
combined into one composite figure, which has restricted 
flexibility for aesthetics. Users have been encouraged to 
separately code each subplot and combine the subplots 
as late as possible. This is concerning because ggplot2 
has been widely used (see Fig. 1) and research routines 
in psychology and human neuroscience have become 
more sophisticated.

To address this issue, I introduce smplot2, an open-
source R package that integrates the practice of data 
visualization in ggplot2 and the programmatic approach 
to plotting. This package gives users equal levels of 
control over both individual subplots and a composite 
plot. It has more than 40 functions at the time of writing 
(see 300+ examples in https://smin95.github.io/dataviz), 
but for brevity, in this tutorial, I primarily discuss how 
it can linearize the workflow of visualizing elegant com-
posite plots using a programmatic approach and maxi-
mize the flexibility for aesthetics in ggplot2. All examples 
here are created with aesthetic defaults of the smplot2 
package, which are clean and appropriate for research 
articles across various fields and data structures. The func-
tions of smplot2 have been optimized for subplotting to 
maximize the visibility of data in a composite plot by 
controlling the extent of blank spacing, scaling, and the 
relative text size. I hope that this tutorial can empower 
readers to perform complex and expressive data visualiza-
tions of a composite plot using a structured workflow.

Aim and structure of the tutorial

The aim of this tutorial is not to reiterate the contents 
of the package’s documentation from the web in its 
entirety or introduce ggplot2 (Hehman & Xie, 2021; 
Wickham, 2016; Wickham et al., 2023). Instead, I aim to 
present a new workflow for the visualization of a com-
posite plot in ggplot2 with a programmatic approach and 
the smplot2 package. In the first section, I briefly intro-
duce some of the visualization functions of smplot2, 
such as its background themes, that improve aesthetics 
for subplotting. Then, in the next three sections, I dem-
onstrate how researchers can produce subplots in 

https://smin95.github.io/dataviz
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ggplot2 iteratively and then combine them into a com-
posite plot using a linear process (similar as shown in 
Fig. 2 for Python’s matplotlib) with three examples. The 
examples become increasingly more sophisticated to 
demonstrate there is no limit to how users can create 
and customize composite figures. The tutorial is sum-
marized in Table 1.

Target audience

In this tutorial, I assume that readers have some basic 
knowledge of R and ggplot2 and some experience with 
working with data frames using functions such as fil-
ter(), group_by(), %>%, and summarise(). They do 
not need to be familiar with concepts of programming 
or be fluent in any other programming languages, such 
as Python. Although the examples in this tutorial use 
randomly generated data based on human-vision studies, 
readers across disciplines will be able to adapt the 

codes/examples in this tutorial easily for their own 
purpose.

Readers who have not used ggplot2 and R should read 
Chapters 2 and 3 of the package’s documentation webpage 
(https://smin95.github.io/dataviz) before starting this tuto-
rial. The chapters provide a step-by-step guide on how to 
install RStudio and use ggplot2. Individuals who have not 
worked with data frames in R are recommended to read 
the tutorial by Nordmann et al. (2022) or the early sec-
tions of Chapter 7 of the documentation webpage (Sec-
tions 7.1 and 7.2). Completing these two prerequisites 
for the tutorial would take about 2 to 3 hours.

Installation requirements for this 
tutorial

These two packages—tidyverse (Wickham et al., 2019) 
and smplot2—should be downloaded for the completion 
of the tutorial from the Comprehensive R Archive 

Table 1. Summary of the Tutorial

Steps to create composite 
figures Functions to use Comments

1.  Construct lapply() 
iteration codes

lapply() During each iteration, the data should be 
filtered for each level of the variable. 
If the user wishes to subplot with 
more than one variable, then use 
nested lapply() functions. The order 
of the figures that will be generated 
depends on the structure of the nested 
lapply() function.

2.  Draw figures iteratively 
using lapply()

geom_*() functions from ggplot2, plotting 
and thematic functions from smplot2 
(e.g., sm_hgrid()) or other functions 
from third-party packages

Set the limits of y- and x-axes to be 
identical for all panels.

3.  Make a title, x-axis 
label, y-axis label for the 
composite figure

sm_common_title(),
sm_common_xlabel(),
sm_common_ylabel() – optional 

functions

The arguments x and y can be adjusted to 
set their coordinates (0 to 1).

4.  Put the subplots, title, and 
axes labels together

sm_put_together() The input for plots should be a list. The 
number of columns (ncol) and rows 
(nrow) must be specified. Blank space 
between panels can be controlled using 
wmargin and hmargin inputs (negative 
values mean less spacing).

5.  Make a common legend 
manually or quickly from 
a sample plot and then 
add the legend to the 
composite figure

sm_common_legend() builds a highly 
customizable legend. sm_add_legend() 
then adds it to the composite figure. If 
no legend is provided as input, sm_add_
legend() can derive a legend from a 
given sample plot.

If customization is important, use sm_
common_legend().

6.  If needed, add annotations 
on the final plot

sm_add_text() for text annotations, 
sm_add_point() for point annotations, 
annotate() for the rest, and functions 
from other packages

For coordinates, x and y values should be 
from 0 to 1.

7. Save the figure. ggsave() from the ggplot2 package height and width set the size of the 
image.

https://smin95.github.io/dataviz
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Network (CRAN). The tidyverse package is a suite of 
multiple packages, such as ggplot2 (for plotting and sav-
ing visualizations), dplyr (for working with data frames), 
and readr (for reading external data files):

install.packages(c(‘tidyverse’,‘smplot2’
)) # smplot2 version: 0.2.4

Open-science practices

With more than 300 examples, smplot2 has been docu-
mented online in detail (https://smin95.github.io/data 
viz); there are 12 are chapters devoted to the package 
at the time of writing. The documentation webpage was 
created using the bookdown package for reproducibility 
(source codes in https://www.github.com/smin95/data 
viz). The codes in the tutorial and their outputs are 
posted online (https://www.smin95.com/smplot2doc).

Introduction to smplot2: Background 
Themes

First and foremost, one should load the two packages 
to memory:

library(tidyverse)
library(smplot2)

smplot2 offers various plotting and thematic functions. 
In this section, only the thematic functions are discussed. 
For more information about the plotting functions (rain-
cloud plot, slope chart, forest plot, Bland-Altman plot, 
etc.), see examples in Chapters 3 through 6 from the 
documentation webpage.

In this example, a randomly generated data set is used 
as shown below:

set.seed(2022) # Set seed for generating 
random data

df <- data.frame(
Subject = rep(paste0(‘S’, 1:16),  

times = 3),
Value = c(
rnorm(n = 16, mean = 0, sd = 1.5), # Day 1
rnorm(n = 16, mean = 5, sd = 1.7), # Day 2
rnorm(n = 16, mean = 10, sd = 2.0) # Day 3

),
Time = rep(paste(“Day”, 1:3), each = 16)

)

head(df)
## Subject Value Time
## 1   S1  1.3502130 Day 1
## 2   S2 -1.7600187 Day 1

## 3   S3 -1.3462280 Day 1
## 4   S4 -2.1667521 Day 1
## 5   S5 -0.4965204 Day 1
## 6   S6 -4.3509435 Day 1

The data frame is stored in the object df. Each row 
of the df object represents a single observation from 
each Subject and Time. The column Subject stores 
identifiers for all subjects in the form of character strings; 
the column Value stores the dependent variable, which 
is the value of interest in this example; the column Time 
contains all identifiers for the independent variable, 
which has three levels, in the form of character strings: 
Day 1, Day 2, and Day 3.

In this section, raincloud plots are drawn using the 
function sm_raincloud() to present the different themes 
(see Fig. 3). Each subject’s data (as points), the sample’s 
distribution (in violin plots), median, and first and third 
quartiles (in boxplots) are typically displayed in a rain-
cloud plot. A black dot below the boxplot for Day 1 
denotes that an outlier is present. Details of this function 
are described in Chapter 6 of the documentation webpage. 
Here, the data from the Value column are plotted as a 
function of Time. One can map the aesthetics (i.e., fill) 
within the ggplot() function so that each unique color 
represents each level of Time (see the codes for Fig. 3).

Figures 3a through 3c show a different background 
theme. The theme with major horizontal grids is used in 
Figure 3a by default because sm_raincloud() imple-
ments the theme automatically. However, this can be 
overwritten if users add another theme function modu-
larly to a ggplot2 object (ex. sm_classic() is added to 
generate Fig. 3). These thematic functions provide mini-
malistic aesthetics and have borders and legends argu-
ments. The former, if set to borders = TRUE, will print 
the border of the panel. The latter, if set to legends = 
TRUE, will print the legend of the standalone plot. There 
are several background themes in the package:

•• sm_hgrid() is a theme with horizontal major 
grids (Fig. 2a).

•• sm_vgrid() is a theme with vertical major grids.
•• sm_hvgrid_minor() is a theme with horizontal 

and vertical grids (major and minor).
•• sm_classic() is a theme with a standard y-axis 

on the left side and x-axis at the bottom (Fig. 2b).
•• sm_minimal() is a theme with no grids (Fig. 2c).

# Figure 3A - Major horizontal grids
ggplot(data = df, mapping = aes(x = Time, 

y = Value, fill = Time)) +
 sm_raincloud() + # Default
 scale_fill_manual(values = sm_color 

(‘blue’,‘darkred’,‘viridian’))

https://smin95.github.io/dataviz
https://smin95.github.io/dataviz
https://www.github.com/smin95/dataviz
https://www.github.com/smin95/dataviz
https://www.smin95.com/smplot2doc
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# Figure 3B - Classic theme
ggplot(data = df, mapping = aes(x = Time, 

y = Value, fill = Time)) +
 sm_raincloud(sep_level = 3) + # 

Separates the graphical components
 sm_classic() +
 scale_fill_manual(values = sm_color 

(‘blue’,‘darkred’,‘viridian’))
# Figure 3C - White background with no 

grids
ggplot(data = df, mapping = aes(x = Time, 

y = Value, fill = Time)) +
 sm_raincloud(which_side = ‘l’) +  

 # Changes the raincloud plot’s facing  
 direction
sm_minimal() +
scale_fill_manual(values = sm_color 

(‘blue’,‘darkred’,‘viridian’))

The themes have been developed to optimize the 
discernability of each plotting feature (e.g., relative 
text size, blank spacing) even when multiple subplots 
are combined into one composite figure. Here, for 
instance, the three examples of the raincloud plot have 
been combined into one figure using the function 
sm_put_together() (codes not shown), which I dis-
cuss extensively in the later sections. To foreshadow, 
sm_put_together(), which combines subplots into 
a composite figure (as described later in the text), 
essentially interacts with these themes and other func-
tions to optimize the aesthetics so that each plotting 
feature is discernible in a multipanel, composite figure. 
For this reason, these functions are discussed before 
creating a composite plot. The hex codes of the three 
colors in Figure 3 are from the sm_color() function, 

which returns primarily colors with high visibility,  
an important factor when one creates a composite 
plot.

In the next three examples in which composite plots 
are created, I strictly use the thematic functions sm_
hgrid(), sm_minimal(), and geom_*() to plot data 
in the form of lines and points (i.e., simplest type of data 
visualization) so that users across all levels of experience 
and background can understand the codes without 
knowing the plotting functions of smplot2.

Example 1: Subplotting Data Using One 
Variable

Simulated data set

Amblyopia is a visual deficit with origins in the primary 
visual cortex (Min et al., 2022). The simulated data here 
represent visual health in individuals with amblyopia 
and normal vision at various experimental conditions 
and types of visual stimuli. They are used throughout 
the rest of the tutorial.

df2 <- read_csv(‘https://www.smin95.com/
amblyopia_random2.csv’)

df2_amb <- df2 %>% filter(Group == 
‘Amblyopia’) %>%
mutate(logSF = log2(SF)) %>%
mutate(Condition = factor(Condition, 

levels = c(‘One’,‘Two’,‘Three’)))

head(df2_amb)
## # A tibble: 6 × 6
## Subject absBP SF Group   Condition logSF

−5

0

5

10

Horizontal Grids (default) A Classic Theme

Day 1 Day 2 Day 3Day 1 Day 2 Day 3Day 1 Day 2 Day 3

No Major Grids (minimal)
a b c

Fig. 3. (a) A default raincloud plot with a background theme that has major horizontal grids. (b) A raincloud plot with a classic 
theme. (c) A raincloud plot with a minimal theme (no grid).

https://www.smin95.com/amblyopia_random2.csv
https://www.smin95.com/amblyopia_random2.csv
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## <chr>  <dbl>  <dbl>  <chr>  <fct>  <dbl>
## 1 A1   0.168   0.5 Amblyopia Three  -1
## 2 A1   1.37    1   Amblyopia Three   0
## 3 A1   1.29    2   Amblyopia Three   1
## 4 A1   2.67    4   Amblyopia Three   2
## 5 A1   0.0111  8   Amblyopia Three   3
## 6 A2   0.0136  0.5 Amblyopia Three  -1

This data set should be loaded to memory using the 
code above. Throughout the tutorial, I use %>% operator, 
which is known as the “pipe.” It allows the data frame 
from the previous operation of data transformation to 
be carried over, or piped, to the next operation. This 
reduces the burden of users from supplying the input 
data frame for each operation. To begin with, extract 
the data from the df2 object only for individuals in the 
Group == ‘Amblyopia’ by using filter(). Next, the 
continuous variable SF, which is an acronym for spatial 
frequency, is converted into log2 scale using mutate(), 
which creates another column (logSF) based on the 
existing column (SF) in the data frame df2. Through 
this logarithmic operation in mutate(), a new column 
logSF is created, with equal spacing along its scale. 
Then, the data type of the Condition column is 
changed using mutate(); it is initially a string, but 
mutate() converts it into a factor and then reorders 
the level of the variable to its numerical order (‘One’-
‘Two’-‘Three’). After the data transformations, a 
newly formed data frame is stored in the object df2_
amb, whose first six rows are displayed in the tutorial. 
Readers can double-check by comparing their own 
printed values of the df2_amb object with those in the 
tutorial.

The column absBP, which is short for absolute bal-
ance point, contains data of the dependent variable 
(y-axis). It is a measure of visual health. The higher the 
value is, the worse the vision is.

In this example, I allocate data to each panel by using 
the variable Subject (i.e., subplotting with one vari-
able). In other words, each panel will display the data 
of each subject (absBP as a function of logSF).

lapply()

lapply() is one of the apply functions from base R. 
It applies a function to a list or a vector and returns a 
list with the same length as the input. A list is a data 
structure of an object that can contain different types of 
elements, such as strings, numbers, and lists. Essentially, 
lapply() is similar to how a for loop works, but it 
returns a list as output. Because ggplot2 objects can be 
stored in a list but not in other types of vectors, I use 
lapply() to perform iterations. Pseudocode 3 shows 
the basic syntax of lapply():

# Pseudocode 3
<OUTPUT> <- lapply(<INPUT>, <FUNCTION>, 

<ADDITIONAL ARGUMENTS>)

The input can be either a list or a vector. If the input 
has a length of 5 (i.e., five elements), then the function 
will be run five times, and an output list that has a length 
of 5 will be returned. In this case, the function will be 
plotting the data, with specific mapping and aesthetics, 
and generate ggplot2 objects. I plot each of the nine 
individuals’ data, so I run the function nine times (i.e., 
nine iterations). The returning output should therefore 
have a length of 9, each of which is a plot. Additional 
arguments can be passed to the function, but in this 
tutorial, there will not be any additional arguments, so 
these can be ignored.

First, I create an input object that specifies the nine 
subjects in the Amblyopia Group. The data frame df2 
contains a column of identifiers for subjects. These 
subjects have identifiers A1 to A9. These can be recre-
ated as vector subj_list by concatenating the string 
‘A’ with a sequence numbers 1:9 (1 to 9 in integers) 
using the function paste0(). The elements in the 
vector subj_list will contain subject identifiers that 
are also found in the Subject column of the data 
frame df2.

In the lapply() structure, through which I plot the 
data of each subject on a separate panel, there should 
be two parts. The approach is used throughout the rest 
of the tutorial, and it can be widely applicable across 
designs and disciplines.

The first part filters data using the index of the itera-
tion. Here, iSubj is the index of the iteration, and it starts 
from 1 and ends at 9 as specified by 1:length(subj_
list). During each iteration, the index is used to retrieve 
the element of the object subj_list, for example, A9 
from subj_list[iSubj] when iSubj = 9. The 
extracted subject identifier is then used to filter for  
each subject’s data before plotting begins (e.g., 
filter(Subject == subj_list[iSubj])). The fil-
tered data are stored in the object subj_data, which will 
be used by the subsequent plotting functions; so plotting 
will use only the filtered data from each subject.

The second part of the lapply() function plots the 
filtered data. The variables are mapped to aesthetics, 
and the appearance of the plot is customized using func-
tions from ggplot2. Here, the specifications are set so 
that the data frame to be used is subj_data, x is logSF, 
and y is absBP, which is the outcome of interest in this 
simulated data set. Moreover, the aesthetic group is 
mapped to the variable Condition of the data frame 
subj_data so that the points are connected with lines 
for each condition. In addition, within the ggplot() 
function, the shape, the filling color of the points 
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(fill), and color of the lines are all set to be unique 
for each condition. In other words, all three conditions 
will be plotted in one panel of each subject at once.

In this example, each condition is coded to a unique 
shape with the function scale_shape_manual(). The 
first condition is coded to the shape value of 21 (circle 
with borders), the second to the value of 22 (square with 
borders), and the third to the value of 23 (triangle with 
borders). Because these shapes have borders, the argu-
ment fill determines their filling color, and color 
determines their border color, which is set to trans-
parent. Likewise, with scale_fill_manual(), each 
condition is color coded to a specific filling color. The 
colors are specified in the object cList, which is defined 
outside the lapply() function using the sm_pal-
ette() function that returns three colors here. This 
function returns default colors of the package and is 
equivalent to sm_color() except that it takes the num-
ber of colors as input instead of character strings speci-
fying the colors. Users are encouraged to find their own 
color schemes from other packages, such as RColor-
Brewer and viridis, available in the R ecosystem:

subj_list <- paste0(“A”, 1:9) # 9 subjects
cList <- sm_palette(3) # Three colors from 

smplot2 (defaults)

indv_plots <- lapply(1:length(subj_list), 
function(iSubj) {
# First part: Filter for each subject’s 

data during each iteration
subj_data <- df2_amb %>%
filter(Subject == subj_list[iSubj])

# Second part: Plot each subject’s data
ggplot(data = subj_data, aes(
x = logSF, y = absBP, group = Condition,
shape = Condition, fill = Condition, 

color = Condition
)) +
geom_line(linewidth = 1) +
geom_point(size = 5, color = 

“transparent”) +
scale_color_manual(values = cList) +
scale_fill_manual(values = cList) +
scale_shape_manual(values = c(21, 22, 

23)) +
sm_hgrid() +
scale_y_continuous(limits = c(0, 3)) +
scale_x_continuous(
limits = c(-1.3, 3.3),
labels = c(0.5, 1, 2, 4, 8)

)
})

As lapply() performs function each time, a plot will 
be generated. Each plot will get stored in the object indv_
plots, which is a list. Because length(subj_list) is 
9 and the input for the lapply() function is a digit from 
1 to 9 (1:length(subj_list)), there will be nine itera-
tions and hence, nine plots that will be generated.

When one codes for multiple subplots in a lapply() 
function (second part of the structure), it is important 
to make the limits of x- and y-axes identical. In the lap-
ply() function, both have been specified using 
scale_y_continuous() (y-axis: 0 to 3) and scale_x_
continuous() (x-axis: –1.3 to 1.3). If there is no speci-
fication of the limits, each plot will have its own limit 
based on each subject’s data. In addition, notice that 
although users plot data as a function of the variable 
logSF, which has values of –1, 0, 1, 2, and 3, the tick 
labels of the x-axis are displayed as 0.5, 1, 2, 4, and 8. 
This is because the labels argument has been supplied 
with these specifications in the function scale_x_con-
tinuous(). Essentially, these inputs mask over the true 
values of the x ticks on the plot. This is a common 
method of plotting data in human-vision studies because 
the visual system has been known to process informa-
tion nonlinearly (Baker et al., 2012), and it is specific to 
the examples in the tutorial.

To display a plot from the object indv_plots, users 
can type the name of the list indv_plots in the console 
or subset for one specific subject’s plot using double 
brackets (e.g., indv_plots[[3]]). This individual plot 
still has ticks for x- and y-axes and their labels. However, 
these will be removed automatically later or resized dur-
ing the generation of a composite plot:

# Figure not shown
indv_plots[[3]] # Print the third plot 

from the list

Next, users define the title and common x- and y-axes 
labels of the composite figure that they will create. As 
their names suggest, sm_common_title() sets the title 
of the combined figure, sm_common_xlabel() sets the 
common x-axis label of the combined plot, and sm_ 
common_ylabel() sets the common y-axis label of the 
combined figure. In these three functions, x and y con-
trol the location of the texts. Their defaults are set to x = 
0.5, y = 0.5, which refers to the center origin of 
their respective areas (x and y do not refer to the coor-
dinate relative to the combined figure):

# Figure 4 - Set the title and axis labels 
of the composite figure

title <- sm_common_title(“Individual data 
(subplotting with one variable)”, x = 
0.53, y = 0.52)
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xlabel <- sm_common_xlabel(“Spatial 
frequency (c/deg)”, x = 0.52)

ylabel <- sm_common_ylabel(“Visual 
deficit”)

Notice that this process is highly similar to what is 
often used in Python’s matplotlib, where fig refers to 
the object that stores the combined figure (see Pseudo-
code 4):

# Pseudocode 4: Titles and axis labels in 
Python’s matplotlib (Figure 4)

fig.suptitle(‘Individual data’, x, y)
fig.text(x, y, ‘Spatial frequency (c/

deg)’) # x-axis label
fig.text(x, y, ‘Visual deficit’, rotation 

= 90) # y-axis label

In Python’s matplotlib, the text labels and the title get 
added to fig (the composite plot) using the object-
oriented approach. Here, use sm_put_together(), 
which is essentially a layout function that creates a com-
posite figure from individual plots. The output from 
sm_put_together() must be stored in an output 
object (e.g., plots_tgd). Three inputs must be provided 
to run sm_put_together(): (a) the list object, which 
stores all plots (e.g., all_plots argument = indv_
plots), (b) the number of columns (e.g., ncol argu-
ment = 3), and (c) the number of rows (e.g., nrow 
argument = 3). There are optional arguments as well, 
such as title, xlabel, and ylabel. For instance, if 
title is not supplied as input, then no space will be 
allocated for a common title in the composite figure. 
Here, I supply title in sm_put_together(). In addi-
tion, the extent of blank spacing (i.e., margin) in both 
width (wmargin) and height (hmargin) can be adjusted 
(see Fig. 2). In this example, they are set as negative 
values to minimize the spacing between subpanels:

# Figure 4 - Combine subplots into a speci-
fied layout

plots_tgd <- sm_put_together(
all_plots = indv_plots, title = title, 

xlabel = xlabel,
ylabel = ylabel, ncol = 3, nrow = 3,
wmargin = -4.5, hmargin = -4.5

)

Users can save the figure using ggsave() (see Fig. 
4). Supply the name of the image file in strings 
(‘together1.pdf’) as the function’s first input and 
the object of the composite figure (plots_tgd) as its 
second input. This forces the function to save the object 
plots_tgd as together1.pdf in the directory. In 

addition, I set the dimension of the image so that it has 
a height and a width of 9 inches:

# Figure 4 - Save the composite output as a 
vector file

ggsave(“together1.pdf”, plots_tgd,
width = 9, # inches
height = 9

)

Immediately in Figure 4, one can notice that the func-
tion sm_put_together() has removed extraneous tick 
labels and titles from both axes in the inner panels. This 
was possible because I had provided the layout of the 
composite figure that was to be constructed in sm_put_
together(), which is similar to how matplotlib controls 
the layout of the figure (see Pseudocode 2). Although 
the default of the function removes the extraneous ticks 
in inner panels (remove_ticks = ‘some’ in sm_put_
together()), this option can be overwritten so that all 
ticks are kept (remove_ticks = ‘none’) or removed 
(remove_ticks = ‘all’). The order of the subpanels 
follows that of plots that are generated by the lapply() 
code chunk. In this case, I set the layout to be (ncol = 
3, nrow = 3), so axis ticks in the second, third, fifth, 
and sixth panels in the composite figure are removed.

One can also label each panel by annotating each 
subject’s identifier (e.g., A1 for Subject 1 in Amblyopia; 
see Fig. 5). There are two ways of achieving this. The 
first way is revisit and modify the code chunk that gen-
erates the nine points iteratively using lapply(), but 
this goes against the aim of linearizing the process of 
subplotting. Therefore, use the function sm_panel_
label() to label each panel:

# Figure 5 - Add subject identification 
label (ex. A1) in each panel

indv_plots_label1 <- sm_panel_label(
all_plots = indv_plots, x = 0.15, y = 

0.85,
panel_pretag = “A”, panel_tag = “1”,
text_color = “black”

)

The function sm_panel_label() has a few argu-
ments, some of which are similar to those of the former 
function. For the first argument all_plots, users must 
provide the list vector (indv_plots) that stores all 
plots. Next, x and y determine the location of the panel 
label; 0.5 is the origin of the panel (i.e., the center of 
each subplot). panel_tag sets the string for enumera-
tion. In this example, I set panel_tag = “1” so that 
the first panel will have “1” labeled, but the next one 
will have “2.” There are other options to enumerate each 
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panel, such as (a) panel_tag = “A” for uppercase 
letters, (b) panel_tag = “a” for small case letters, (c) 
panel_tag = “I” for upper roman numerals, and (d) 
panel_tag = “i” for lower roman numerals. These 
options of the panel_tag argument were included as 
inspired by the plot_annotation() function of the 
patchwork package (Pedersen, 2019). In addition, there 
are tag labels that can be set to be consistent across 
panels: panel_pretag and panel_posttag. As their 
names imply, panel_pretag comes before panel_tag, 
and panel_posttag comes after panel_tag. These 
two arguments can be any string at any length. To label 
each panel using the subject’s identifier that is consistent 
with those in the data frame df2 (e.g., A1 and A3), 
panel_pretag should be “A.” Then, we store the output 
from sm_panel_label() in the object indv_plots_
label1. The differences between plot_annotation() 

and sm_panel_label() are that in sm_panel_
label(), (a) the locations can be specified in x and y 
coordinates within but not outside each panel, (b) anno-
tations can be added multiple times (as demonstrated in 
this example) in sequence, and (c) the plot input must 
be a single list object rather than separate ggplot2 
objects.

One can also label each panel so that the first panel 
has “a)” and the second panel has “b).” To do so, use 
the function sm_panel_label() again, in which the 
user provides the indv_plots_label1 object as input 
and sets panel_tag = ‘a’ and panel_posttag = ‘)’. 
This creates labels with a small alphabet that is fol-
lowed by a parenthesis in each panel. The final output 
is then saved in the indv_plots_label2 object, 
which is the end result of running sm_panel_label() 
twice:
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Fig. 4. A composite plot with three columns and three rows. Each panel plots each subject’s data across all three 
conditions. A legend is absent in this figure.
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# Figure 5 - Add panel label in small alpha-
bets followed by a bracket

indv_plots_label2 <- sm_panel_label(
all_plots = indv_plots_label1, x = 0.15, 

y = 0.7,
panel_tag = “a”, panel_posttag = “)”,
text_color = “black”, fontface = “bold”

)

Next, one can sort the nine panels into a layout with 
five columns and two rows (ncol = 5, nrow = 2) 
using the function sm_put_together(). One also add 
the common title, common x-axis label, and common 
y-axis label by directly supplying character strings rather 
than using sm_common_*() functions. This option is 
less flexible, but it is more convenient; the text size can 
still be adjusted using the labelRatio argument, where 
1 refers to the default size but not its location. The 
labelRatio argument does not affect the size of text 
labels created from sm_common_*() functions. sm_put_
together() also supports combining subplots with 
secondary x- and y-axes (not shown in the tutorial); 
xlabel2 and ylabel2 should be provided to set the 
titles for these axes:

# Figure 5 - Combine the subplots into one 
figure

plots_tgd2 <- sm_put_together(
all_plots = indv_plots_label2,
title = “Individual data (subplotting 

with one variable)”,
xlabel = “Spatial frequency (c/deg)”,

ylabel = “Visual deficit”, ncol = 5, 
nrow = 2,

wmargin = -2, hmargin = -2, labelRatio = 
0.9

)

Now that a composite figure has been created with 
individual subplots and labels, one can add a common 
legend in the combined figure plots_tgd2. There are 
two ways to do so using smplot2. There is a quick way 
and a slow but highly customizable way. They both 
involve the function sm_add_legend(). To preview, 
readers can compare the legend in Figure 5 from the 
quick method with the legend in Figure 6 from the slow 
method.

The first method of adding a legend basically forces 
sm_add_legend() to derive a legend from a reference 
plot so that users do not have to manually make it. To 
make the legend using the quick method, users should 
provide some inputs for some arguments. The output 
from sm_put_together() (plots_tgd2) must be sup-
plied as input for the argument combined_plot. The 
coordinate of the legend can be specified using x (hori-
zontal coordinate of the legend) and y (vertical coordi-
nate of the legend) arguments. In addition, a reference 
plot from which the legend can be derived must be 
supplied for the argument sampleplot (i.e., one plot 
from indv_plots). In this example, the coordinate is 
set to be within the area of the empty 10th panel 
(x=0.92, y=0.35); the sample plot is derived from the 
first subject’s plot (indv_plots[[1]]). The direction 
argument (i.e., orientation) of the legend is specified to 
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Fig. 5. A composite plot with two rows and five columns. Nine panels display each subject’s data in the amblyopia group, and the 
last panel shows the legend, representing each condition with a unique color.
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be vertical, not horizontal. legend_spacing is 
an argument that can set the extent of blank space within 
the legend to prevent overcrowding. If border = FALSE, 
then the border of the legend will be removed. The font 
size of the legend can be adjusted using the argument 
font_size. The code below stores the output from 
sm_add_legend() in the object plots_tgd2_legend 
and then saves the figure as a vector file using the 
ggsave() function with specified width and height:

# Figure 5 - Legend in the area of the 10th 
panel

plots_tgd2_legend <- sm_add_legend(
combined_plot = plots_tgd2, x = 0.92, y 

= 0.35,
sampleplot = indv_plots[[1]], direction 

= “vertical”,
legend_spacing = 1, border = TRUE, font_

size = 13
)

# Figure 5 - Save the composite figure as 
a vector file

ggsave(“together2.pdf”, plots_tgd2_legend,
width = 15, # inches
height = 6.6

)

Two observations can be made from the legend in 
Figure 5. First, the legend’s title matches to one of the 

column’s name (Condition) in the data frame df2. 
Second, labels within legends are identical to the string 
characters that are provided in the Condition column 
of df2. These similarities indicate that the legend’s title 
and labels have been automatically generated according 
to the given data frame. If the legend is created in this 
quick approach (by forcing sm_add_legend() to derive 
one from a sample plot), the title and the labels cannot 
be customized, although the title can be removed:

# Compute the average and standard error for 
each SF and Condition level

df2_amb_avg <- df2_amb %>%
group_by(logSF, Condition) %>%
summarise(
avgBP = mean(absBP),
stdErr = sm_stdErr(absBP), .groups = 

“drop”
)

head(df2_amb_avg)
## # A tibble: 6 × 4
##   logSF Condition  avgBP stdErr
##   <dbl> <fct>      <dbl> <dbl>
## 1    -1 One       0.0769 0.0182
## 2    -1 Two       0.283  0.0649
## 3    -1 Three     0.199  0.0720
## 4     0 One       0.234  0.151
## 5     0 Two       0.491  0.0705
## 6     0 Three     0.374  0.135
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Fig. 6. A composite plot with two rows and five columns with a common legend that is located at the bottom-right area of the figure. 
The first nine panels display each subject’s data from the amblyopia group, and the last panel shows the average data with error bars, 
which represent standard errors.
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Because there is one empty panel that is available for 
plotting (10th panel of Fig. 5), users can add an addi-
tional panel that shows the average data of the nine 
subjects with error bars (e.g., standard error). This panel 
showing the average data should have the same x- and 
y-limits as those of the individual subjects’ panels. Next, 
one can compute the average and standard errors of the 
data from nine individuals for each independent variable 
(logSF) and experimental condition (Condition) and 
store the resulting data frame into the object df2_amb_
avg. The initial step can be achieved using functions 
from the dplyr package, such as group_by() and sum-
marise(). group_by() does not change the data frame 
at the surface level. Instead, it changes its underlying 
structure so that the following functions that will be 
called later for computations within summarise() will 
be done separately for each grouped variable’s level. 
The two computations—mean and standard error—are 
conducted using the functions mean() and sm_
stdErr(), respectively. The latter is a shortcut function 
from the smplot2 package. The grouping will remain 
even after the computation has been performed, so it is 
crucial to undo the grouping by setting .groups = 
‘drop’ in summarise(). For more information about 
these functions, see Chapter 7 of the documentation 
webpage (https://smin95.github.io/dataviz):

# Figure 6 - 10th panel showing the average 
data

avg_plot <- ggplot(data = df2_amb_avg, 
aes(
x = logSF, y = avgBP, group = Condition,
shape = Condition, fill = Condition, 

color = Condition
)) +

geom_line(linewidth = 1) +
geom_point(size = 5, color = “white”, 

stroke = 1) +
geom_linerange(aes(ymin = avgBP - 

stdErr, ymax = avgBP + stdErr), 
linewidth = 1) +

scale_color_manual(values = sm_
palette(3)) +

scale_fill_manual(values = sm_
palette(3)) +

scale_shape_manual(values = c(21, 22, 
23)) +

sm_hgrid() +
scale_y_continuous(limits = c(0, 3)) +
scale_x_continuous(
limits = c(-1.3, 3.3),
labels = c(0.5, 1, 2, 4, 8)

) +

annotate(“text”, label = “Average”, x = 
-0.3, y = 2.65, size = 5.5,

fontface=‘bold’)

With the newly created data frame df2_amb_avg, 
one can plot the average data using the same mapping 
specifications as those in the individual plots in the 
lapply() function. Average data are plotted as points 
with white borders using the geom_point() function. 
The lines are drawn to join the points with geom_
line(), and the error bars without caps are displayed 
using geom_linerange(), which is a useful function 
for indicating intervals of some range. The aesthetic 
mapping is defined in geom_linerange() so that verti-
cal lines with certain ranges can be plotted at each  
level of logSF (x-axis); explicitly specify the minimum 
(ymin = avgBP - stdErr) and maximum (ymax = 
avgBP + stdErr) of the vertical range to be equal to 
the range of the standard error of the average data. Do 
not use lapply() function here because one plot needs 
to be made.

# Figure 6 - Combine all the subplots into 
a composite plot

all_plots <- list(indv_plots_label1, 
avg_plot)

plots_tgd3 <- sm_put_together(
all_plots = all_plots,
title = “Individual data and average 

(subplotting with one variable)”,
xlabel = “Spatial frequency (c/deg)”,
ylabel = “Visual deficit”, ncol = 5, 

nrow = 2,
wmargin = -4.5, hmargin = -4.5, 

labelRatio = 0.9
)

The limits of both x- and y-axes and the thematic 
background (i.e., sm_hgrid()) are set to be identical 
to those of the individual plots. In addition, annotate the 
average plot with the bolded text ‘Average’ using 
annotate(), where users can specify its coordinate to 
be at the top left of the panel (x = -0.3, y = 2.65) 
in the units of the plotted data (x = logSF, y = avgBP). 
The plot output is then saved in the object avg_plot.

Then, store all 10 plots (9 individuals’ plots in indv_
plots_label1 + 1 average plot in avg_plot) that have 
been generated into one list using the function list() 
and then assign the output to the object all_plots. 
The all_plots object will be the input for sm_put_
together(), which will create a composite plot using 
the plots, title, and axis labels with a layout (ncol = 5 
and nrow = 2).

https://smin95.github.io/dataviz
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Because there are 10 panels to plot in a layout with 
five columns and two rows, there should already be a 
limited amount of available space for the legend (for the 
final output, see Fig. 6). To effectively use the remaining 
plotting space, users will have to build and customize a 
legend using the function sm_common_legend() rather 
than relying on the automatically generated legend from 
sm_add_legend(). After creating a legend manually, 
users can then add it to the composite plot using sm_
add_legend() at a specific location within the com-
bined figure. This option requires more work, but it is 
more flexible.

To do so, users need to essentially create a new plot 
using the standard procedure of ggplot2 (see codes 
below). This includes setting the mapping x and y 
variables to certain aesthetics. Points are also drawn 
using geom_point() so that they are included in the 
legend. The legend labels have also been changed, as 
specified in the two scale_*() functions. Finally, 
users finish creating the legend by using sm_common_
legend(), which essentially hides all features of a 
normal graph, such as points and axis lines, that will 
be plotted otherwise. As a result, the output legend2 
prints the legend components only when it gets called. 
I set the legend to have a horizontal orientation with 
no borders (border = FALSE). The text size of the 
legend can also be adjusted using the argument text-
Ratio, which has been set to 1.1 in this example; this 
means that the text size of the legend is 1.1 times larger 
than the default from a given theme. Finally, leg-
end_spacing controls the amount of blank space in 
the legend:

# Figure 6 - Create a legend manually
legend2 <- ggplot(data = df2_amb, aes(

x = logSF, y = absBP, group = Condition,
shape = Condition, fill = Condition

)) +

geom_point(size = 4.5, color = “white”) +
scale_fill_manual(
values = sm_palette(3),
labels = c(
“Condition 1 “, “Condition 2 “,
“Condition 3 “

)
) +
scale_shape_manual(
values = c(21, 22, 23),
labels = c(
“Condition 1 “, “Condition 2 “,
“Condition 3 “

)
) +

sm_common_legend(
title = FALSE, direction = “horizontal”, 

border = FALSE,
textRatio = 1.1, legend_spacing = .9

)

The customized legend can be added to the compos-
ite plot with the function sm_add_legend() at a spe-
cific coordinate (x = 0.84, y = 0.05; bottom-right 
region of Fig. 6). Because I have manually created the 
legend with sm_common_legend(), there is no need to 
supply inputs for other arguments in sm_add_leg-
end(), such as direction, border, and sampleplot, 
all of which will be ignored. The final output—a com-
posite figure that shows both individual plots and a 
panel that shows the average data (Fig. 6)—is saved 
using ggsave() from the ggplot2 package:

# Figure 6 - Save the figure with a legend 
as a vector file

plots_tgd3_legend <- sm_add_legend(
combined_plot = plots_tgd3, legend = 

legend2, x = 0.84,
y = 0.05

)

ggsave(“together3.pdf”, plots_tgd3_legend,
width = 15, # inches
height = 6.6

)

Readers might realize that they could also generate 
Figures 4 through 6 with facet_wrap(). Indeed, when 
subplotting data using one variable, using facet_
wrap() might be simpler. However, the advantage of 
using smplot2’s pipeline with lapply() is that it remains 
very similar even if more variables or lapply() func-
tions are added (next two examples).

Example 2: Subplotting Data Using  
Two Variables

Thus far, I have explored only a relatively simple way 
of assigning data to each panel. In this example, I allo-
cate data to each panel using two variables (Condition 
and Subject Group).

In this example, the same data set (df2) will be used, 
albeit with some data transformations. Average data at 
each level of condition and subject group will be plot-
ted. There are three experimental conditions and two 
groups, totaling to six combinations of levels from the 
two variables. Therefore, the data will be allocated to 
six separate panels:
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df2_avg <- df2 %>%
mutate(logSF = log2(SF)) %>%
mutate(Condition = factor(Condition, 

levels = c(“One”, “Two”, “Three”))) 
%>%

group_by(logSF, Condition, Group) %>%
summarise(
avgBP = mean(absBP),
stdErr = sm_stdErr(absBP), .groups = 

“drop”
)

head(df2_avg)
## # A tibble: 6 × 5
##  logSF Condition Group   avgBP stdErr
##  <dbl> <fct>    <chr>    <dbl>  <dbl>
## 1   -1 One       Amblyopia 0.0769 0.0182
## 2   -1 One       Normal    0.149    0.0491
## 3   -1 Two       Amblyopia 0.283    0.0649
## 4   -1 Two       Normal    0.287    0.0707
## 5   -1 Three     Amblyopia 0.199    0.0720
## 6   -1 Three     Normal    0.244    0.0868

To begin with, the original data frame df2 is trans-
formed similarly as in the previous example by creating 
another column for spatial frequency in log-scale to 
achieve equal spacing (logSF column) and reordering 
the level of the Condition column to its proper, 
numerical order by converting it into factor from 
strings (‘One’-‘Two’-‘Three’). Next, the codes com-
pute the average and standard error for each combina-
tion of the two variables. This is possible because the 
underlying structure of the data frame is transformed 
using group_by() so that subsequent computations 
for average and standard error on these data in sum-
marise() are performed according to the specified 
groupings. As in Example 1, the mean is computed 
using mean(), and the standard error is computed 
using sm_stdErr().

In this example, there will be two levels of lap-
ply() structure in the code fragment because I per-
form subplotting with two variables (Group and 
Condition). Hence, the code structure will have one 
inner function and one outer function. This is better 
known as a nested structure, which involves using 
functions in a hierarchical fashion. The outer function 
will iterate around the variable Group, and the inner 
function will iterate around Condition. This structure 
of the nested functions will affect the order in which 
the plots will be generated and stored in the object 
avg_plots. Specifically, plots from the first level of 
Group and all three levels of Condition will be gen-
erated first, followed by those from the second level 
of Group.

With the structure of the nested lapply() functions 
in mind, users can first create vectors that contain string 
elements that match the identifiers of Group and Con-
dition columns from the df2_avg data frame. These 
are then stored in group_list and cond_list objects, 
respectively. Each iteration of the nested functions will 
filter the average data based on the selected element of 
group_list and cond_list from their indices, for 
example, Group == group_list[[iGroup]], where 
iGroup = 1, and therefore, Amblyopia:

# Figure 7 - Visualize each subplot
group_list <- c(“Amblyopia”, “Normal”)
cond_list <- c(“One”, “Two”, “Three”)
shape_list <- c(21, 22, 23) # Shape for 

each condition
cList <- list(

c(“#ddc7d8”, “#d3a7c0”, “#b7729a”), # 
Color for each subject group

c(“#bababa”, “#999999”, “#636262”)
)

avg_plots <- lapply(1:length(group_list), 
function(iGroup) {
lapply(1:length(cond_list), 

function(iCond) {
# First part: Filter average data for 

each group & condition during each 
iteration

currData <- df2_avg %>%
filter(Condition == cond_list[iCond]) 

%>%
filter(Group == group_list[iGroup])

# Second part: Plot the filtered average 
data

pp <- ggplot(data = currData, aes(x = 
logSF, y = avgBP)) +

geom_area(fill = cList[[iGroup]]
[[iCond]], alpha = 0.3) +

geom_line(linewidth = 1, color = 
cList[[iGroup]][[iCond]]) +

geom_point(
size = 5, shape = shape_list[[iCond]], 

color = “white”,
fill = cList[[iGroup]][[iCond]], stroke 

= 1
) +
geom_linerange(aes(ymin = avgBP - 

stdErr, ymax = avgBP + stdErr),
linewidth = 1, color = cList[[iGroup]]

[[iCond]]
) +
scale_y_continuous(limits = c(0, 1.6)) +
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scale_x_continuous(
limits = c(-1.3, 3.3),
labels = c(0.5, 1, 2, 4, 8)

) # pp is the intermediate plot output

# Third part (optional): Apply different 
themes based on subject grouping

if (group_list[iGroup] == “Amblyopia”) {
pp + sm_minimal() # No grids for 

Amblyopia
} else {
pp + sm_hgrid() # Horizontal grids for 

Control
}
})

})

In addition, shapes are set to be unique for each of 
the three experimental conditions; their values are stored 
in the shape_list vector, and each value will get 
selected during the iteration for each condition to spec-
ify the shape when plotting (e.g., shape = shape_
list[[iCond]]). The color palettes for the two subject 
groups are set to be different, and the intensity of the 

color is set to increase as a function of Condition. The 
color values (in hex codes) are stored in the list vector 
cList, which contains six different colors that have 
been separated into two vectors (one for each Group). 
Therefore, if the iteration has an index for the first level 
of Group and the second level of Condition, the cor-
responding color will be cList[[1]][[2]], where 
cList[[1]] contains three colors that are in the pink 
palette in the increasing intensity. Here, the first level of 
Group is Amblyopia because the first element of 
group_list is Amblyopia. Finally, using if condi-
tional statements, users can allow subplots only of Nor-
mal group’s data to have horizontal grids but not those 
of Amblyopia. This is possible because the intermediate 
plotting output is stored as in the second part of the 
lapply function. Thematic functions are then added 
modularly to pp in the third part of the lapply function, 
creating a final output. The third part is optional to 
perform subplotting, and it can be useful to set specific 
customizations. Integrating the programmatic approach 
for plotting allows users to dynamically control aesthet-
ics, such as color, shape, and theme (Fig. 7), which is 
very difficult to do in ggplot2 unless users code plots 
separately.
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Fig. 7. A composite plot with two rows and three columns, showing the average data from each condition and 
group with error bars (standard error). The first row shows data of the amblyopia group, whereas the second row 
shows the data of the normal group, as specified in the lapply() function. The main and secondary titles have 
been added as annotations.
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As in Example 1, the lapply() function must contain 
two parts. The first part filters for the data of interest, 
which are average data at each group and condition. 
The filtered data are stored in the object currData. 
Then, the second part of the function plots the data from 
currData. Specifically, the average data are plotted as 
points using geom_point(), whereas the associated 
standard error values are drawn in vertical lines using 
geom_linerange() (as explained in Example 1). Here, 
I use an additional function from the ggplot2 package: 
geom_area(), which plots area (i.e., filled line plots). 
The function essentially fills the area below the lines of 
the plot with colors. Coloring the area is useful to illus-
trate the magnitude of the data. In this example, I make 
it transparent to some extent by setting alpha = 0.3; 
if alpha = 1, the colored area will be opaque. Further-
more, the x- and y-axes limits are set to be identical for 
all panels using scale_x_continuous()  and 
scale_y_continuous() functions because the panels 
will get combined into one composite figure with shared 
tick labels. Finally, the theme is set to sm_hgrid() to 
optimize the aesthetics of each panel for subplotting:

avg_plots # A list of list: each element has 
three plots

Notice that in this example, the object avg_plots is 
a list of list, where each element is a list containing three 
plots. It has a length of 3 even if it stores six plots in 
total. However, the function sm_put_together still rec-
ognizes it as a list with six elements (i.e., plots) because 
the function automatically flattens each element if the 
element is a list itself. There is no need to manually 
reorganize the structure of the object avg_plots for 
the function sm_put_together() to operate. It is 
important to be aware that the order of the plots that 
will be used in the composite figure from sm_put_
together is avg_plots[[1]][[1]], avg_plots[[1]]
[[2]], avg_plots[[1]][[3]], avg_plots[[2]]
[[1]], avg_plots[[2]][[2]], and avg_plots[[2]]
[[3]]. If one were to subplot these panels in a 2 × 3 
figure, then three plots from avg_plots[[1]] will be 
on the first row, whereas three plots from avg_
plots[[2]] will be on the second row.

Next, I set y-axis label of the combined figure as in 
Example 1 by directly providing character strings in sm_
put_together(). However, for the xlabel, I use the 
output created from sm_common_xlabel(), demonstrat-
ing that both options of labeling the axes can work in 
concert. Here, the argument wRatio controls the width 
of the leftmost column to those of other columns. The 
value exceeds the value of 1 because the panels in the 
leftmost column have y-axis ticks, capturing additional 
plotting space. If an input for this argument is missing, 

the function by default adjusts a width ratio using the 
information about the composite plot, such as the num-
ber of lines and characters in the tick labels. The argu-
ment ylabel2 has an input of an empty string because 
if the input is supplied in any form (even when it is 
empty), some space will be spared on the right side of 
the composite plot (area for labels of secondary y-axis), 
where users will add labels of the two subject groups. 
As previously noted, labelRatio affects only axis labels 
that are created directly from sm_put_together(), so 
it will adjust the size of ylabel but not xlabel:

# Figure 7 - Combine the subplots and specify 
the layout

xlabel <- sm_common_xlabel(“Spatial 
frequency (c/deg)”, x = 0.52)

avg_plots_tgd <- sm_put_together(
all_plots = avg_plots,
title = ““, # Spare space for title
xlabel = xlabel,
ylabel = “Visual deficit”,
ylabel2 = ““, # Spare space for group 

label
ncol = 3, nrow = 2, wRatio = 1.1, 

wmargin = -2, hmargin = -2,
labelRatio = 0.95 # Text size of the 

ylabel
)

In this example, notice that I also did not supply a 
character string for the main title (title argument) of 
the combined plot in sm_common_title(). By putting 
an empty string, I merely allocated some space for the 
title at the top of the figure, where I will add text anno-
tations using sm_add_text(). I can set the coordinate 
of the title to be at the center of the x-axis and top along 
the y-axis (x = .55, y = .98, where 0.5 represents 
the origin of the combined figure) and its fontface to 
be bold. The text annotation itself can be defined using 
the label argument within sm_add_text().

As for the group labels, one can also use sm_add_
text() to denote the two subject groups by setting the 
orientations of the texts at 270° relative to the horizontal 
axis using the angle argument. Position them on the 
right side of the composite figure by setting x = 0.93.

Next, because I have assigned data to multiple panels 
using two variables (groups and conditions), it leaves 
one more variable (Condition) to label in the compos-
ite plot. Here, I can add a subtitle at the top of each 
column where I label each condition (as shown in  
Fig. 7) using sm_add_text(). When using sm_add_*() 
functions, the coordinate is uniform regardless of the 
size of the composite plot output that is generated from 
sm_put_together() or sm_add_legend() (0 to 1;  



Advances in Methods and Practices in Psychological Science 7(3) 19

x = 0.5, y = 0.5 is the center); essentially, the anno-
tations can be added to the composite figure similarly 
as to how geom objects can be added together to form 
a ggplot2 object with a common coordinate:

# Figure 7 - Add text annotations
avg_plots_tgd1 <-
avg_plots_tgd + # Composite plot

sm_add_text(
label = “Average data (subplotting with 

two variables)”, # Main title
x = 0.53, y = 0.98, fontface = “bold”, 

size = 17
) +
sm_add_text(label = “Condition 1”, x = 

0.25, y = 0.92, size = 14) + # Sub-
title for Column 1

sm_add_text(label = “Condition 2”, x = 
0.51, y = 0.92, size = 14) + # Sub-
title for Column 2

sm_add_text(label = “Condition 3”, x = 
.78, y = .92, size = 14) + # Sub-title 
for Column 3

sm_add_text(label = “Control”, x = 0.93, 
y = 0.335, angle = 270, size = 15) + # 
Group label

sm_add_text(label = “Amblyopia”, x = 
0.93, y = 0.705, angle = 270, size = 
15) # Group label

The final figure is stored in the object avg_plots_
tgd1, which then gets saved as an image using the 
ggsave() function from the ggplot2 package:

# Figure 7 - Save the final output as a vec-
tor file

ggsave(“avg_together.pdf”, avg_plots_tgd1,
width = 9.6, # inches
height = 6.4

)

Example 3: Complex Subplotting Using 
Separate lapply() Functions

In this example, using the data frames df2_amb and 
df2_avg from the previous examples, I create a com-
posite figure that plots the data of individuals in the 
Amblyopia group in a slightly more complex way that 
is not currently possible with ggplot2 or its third-party 
packages that enhance its faceting functions. This time, 
I allocate the data from each condition of each individual 
to a unique panel and plot the average data for each 
condition on a unique panel:

# Figure 8 - Generate three subplots for 
each subject

subj_list <- paste0(“A”, 1:9) # 9 subjects
cond_list <- c(“One”, “Two”, “Three”)
shape_list <- c(21, 22, 23)
cond_cList <- c(“#ddc7d8”, “#d3a7c0”, 

“#b7729a”)

indv_plots <- lapply(1:length(subj_list), 
function(iSubj) {

lapply(1:length(cond_list), 
function(iCond) {

# First part: Filter data for each subject 
& condition during each iteration

subj_data <- df2_amb %>%
filter(Subject == subj_list[iSubj]) %>%
filter(Condition == cond_list[iCond])

# Second part: Plot the filtered data
ggplot(data = subj_data, aes(x = logSF, 

y = absBP)) +
geom_area(fill = cond_cList[[iCond]], 

alpha = 0.3) +
geom_line(linewidth = 1, color = cond_

cList[[iCond]]) +
geom_point(
size = 5, shape = shape_list[[iCond]],
color = “transparent”, fill = 

cond_cList[[iCond]]
) +
sm_hgrid() +
scale_y_continuous(limits = c(0, 3)) +
scale_x_continuous(
limits = c(-1.3, 3.3),
labels = c(0.5, 1, 2, 4, 8)

) +
annotate(“text”,
label = paste0(“A”, iSubj), x = -0.9,  

y = 2.65, size = 5.5,
hjust = 0

)

})
})

As the title for this example implies, I create two sepa-
rate lapply() functions to build a composite figure. 
With the data frame df2_amb, the first function will iter-
ate through each subject’s data at each condition, creating 
27 plots (9 subjects × 3 conditions). With the data frame 
df2_avg, another lapply() function will iterate through 
the average data at each condition, generating three plots 
(three conditions). These outputs will then be combined 
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and stored in a single object, which will then be used as 
input by the layout function sm_put_together() to 
create a composite plot of 30 subplots, all of which will 
have the same x- and y-axes limits.

To generate a plot for each subject at each condition 
using df2_amb, a nested lapply() structure should be 
used, with one inner function and one outer function 
(as described in Example 2). Data can be filtered simi-
larly as in Example 2 during each iteration. The structure 
of the nested functions will determine the order in which 
the figure outputs will be created and stored in the out-
put (i.e., indv_plots). In this example, the first three 
outputs will be plots using data from the first element 
of subj_list and all three elements from cond_list 
because the latter has been used to iterate through the 
inner lapply() function. Aesthetics can also be dynam-
ically controlled using the programmatic approach. For 
example, different shapes and colors can be set to rep-
resent each condition, as specified by the order of 
objects shape_list and cond_cList. The figures that 
are generated from this lapply() function are stored 
in the indv_plots object.

In Example 1, I annotated each panel with the sub-
ject’s identifier using the function sm_panel_label() 
because I had forgotten to include codes that add panel 
label inside the nested lapply() code fragment (Figs. 
5 and 6). Here, I use an alternative method; the annota-
tion label on each panel is defined within the lap-
ply() code fragment that generates the individual 
panels in sequence. Specifically, this can be performed 
using the function annotate(), which is from the 
ggplot2 package. Specify its annotation type as text 
for the first input and the label as each subject’s iden-
tifier by concatenating the string A with the index of 
the subject during each iteration (iSubj) with the func-
tion paste0(). The coordinates of x and y are set in 
the units of the data that are plotted so that the label 
annotations are on the top left of each panel. The argu-
ment hjust aligns the text to the left because it is set 
as 0. If hjust is set to 1, the text label will be aligned 
to the right. After writing the codes, readers can  
check if the indv_plots object correctly stores each 
subject’s plot at each condition with the panel label of 
each subject’s identifier (e.g., A1 in the first plot of 
indv_plots):

# Figure 8 - Generate a subplot for each 
condition’s average across subjects

avg_plots_amblyopia <- 
lapply(1:length(cond_list), 
function(iCond) {

# First part: Filter average data for each 
condition
currData <- df2_avg %>%

filter(Group == “Amblyopia”) %>%
filter(Condition == cond_list[iCond])

# Second part: plot the filtered data
ggplot(data = currData, aes(x = logSF, y 

= avgBP)) +
geom_area(fill = cond_cList[[iCond]], 

alpha = 0.25) +
geom_line(linewidth = 1, color = cond_

cList[[iCond]]) +
geom_point(
size = 5, shape = shape_list[[iCond]], 

color = “white”,
fill = cond_cList[[iCond]], stroke = 1

) +
geom_linerange(aes(ymin = avgBP - 

stdErr, ymax = avgBP + stdErr),
linewidth = 1, color = 

cond_cList[[iCond]]
) +
sm_hgrid() +
scale_y_continuous(limits = c(0, 3)) +
scale_x_continuous(
limits = c(-1.3, 3.3),
labels = c(0.5, 1, 2, 4, 8)

) +
annotate(“text”,
label = “Average”, x = -0.9, y = 2.65, 

size = 5.5,
hjust = 0, fontface = “bold”

)
})

Next, construct codes that generate plots using the 
average data (from df2_avg) at each condition. This 
requires a single lapply() structure, looping through 
each condition. Data can be filtered similarly as in the 
previous examples. For the average panels, I establish 
the aesthetics so that the points have white border lines, 
thereby accentuating the error bars. In addition, I add 
annotations with the bolded text ‘Average’. There 
will be three iterations total from this lapply() func-
tion. The order of the figure outputs will follow the order 
of the elements in cond_list. The three output figures 
are stored in the object avg_plots_amblyopia.

In the lapply() function, as that in Example 2, the 
average data are plotted as points using geom_point(), 
the lines that connect the points are drawn using geom_
line(), the areas below the lines are filled with colors 
and some transparency using geom_area(), and the 
range of standard error across subjects is displayed in 
vertical lines using geom_linerange(). The ticks and 
limits of both x- and y-axes are set to be consistent 
across panels:
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# Figure 8 - Put together all subplots 
from individual and average data

all_plots1 <- list(indv_plots, avg_plots_
amblyopia) # Combine all plot outputs in 
a list

composite_plot <- sm_put_together(
all_plots = all_plots1,
title = “Individual and average data 

(two separate functions)”,
xlabel = “Spatial frequency (c/deg)”,
ylabel = “Visual deficit”,
ncol = 6, nrow = 5, wmargin = -5, 

hmargin = -5,

labelRatio = 0.95 # Text size of the 
axes’ label

)

I then combine two objects (indv_plots and avg_
plots_amblyopia) from the two lapply() structures 
into a single object (all_plots1) using the function 
list(). The object all_plots1 will then be used as 
input for sm_put_together(). Notice that because the 
indv_plots list has been generated from a nested lap-
ply() structure, each of the nine elements in the list 
contains three plots (hence, 27 plots total). Conversely, 
avg_plots_amblyopia is from a single lapply() 
function, so there are three elements in the list, and each 
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Fig. 8. A composite plot with five rows and six columns. Twenty-seven panels display each subject’s data from each condition, and 
the last three panels show the average data with error bars, which denote standard errors. A borderless legend is placed at the bottom-
right corner of the composite figure.
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element stores one plot (hence, three plots total). In 
other words, these two lists have different underlying 
structures. However, this is not an issue because sm_
put_together() will automatically flatten different 
structures of list (e.g., list of list) into a uniform list 
structure, thereby making it easier for users to use the 
function when they have used multiple, separate lap-
ply() structures to generate numerous subplots.

Thirty panels that have been generated with the two 
separate lapply() iterations are combined using sm_
put_together(), where ncol = 6, nrow = 5 are 
set as the layout of the composite figure. In addition, 
the main title, x-axis label, and y-axis label are all defined 
and then integrated into its composite form. Next, create 
a custom legend using sm_common_legend(), as has 
been done in the previous examples. This legend is set 
to have a horizontal orientation with no border (bor-
der = FALSE). The legend is coded so that the fill 
and shape aesthetics are mapped to each level of Con-
dition. Then, one can add it to the object compos-
ite_plot using the function sm_add_legend() at the 
bottom-right corner of the composite plot (x=0.85, 
y=0.065 of composite_plot):

# Figure 8 - Make a legend
legend3 <- ggplot(data = df2_amb, aes(
x = logSF, y = absBP, group = Condition,
fill = Condition, shape = Condition

)) +
geom_point(size = 5, color = “white”) +
scale_fill_manual(
values = cond_cList,
labels = c(“Condition 1 “, “Condition 2 

“, “Condition 3 “)
) +

scale_shape_manual(
values = c(21, 22, 23),
labels = c(“Condition 1 “, “Condition 2 

“, “Condition 3 “)
) +

sm_common_legend(
direction = “horizontal”, border = 

FALSE,
textRatio = 1.2, legend_spacing = 0.9

)

composite_plot2 <- sm_add_legend(combined_
plot = composite_plot, x = 0.85, y = 
0.065,
legend = legend3)

Finally, users can add other types of annotations 
(besides sm_add_text() and sm_add_point()) using 
ggplot2 functions directly. Here, I add two rectangles to 
the composite plot using the function annotate(). The 

coordinate system works similarly to how sm_add_*() 
functions work; when x and y are 0.5, annotations are 
drawn at the origin of the composite plot. The anno-
tate() function requires inputs for some arguments. 
The first input is the type of geom, which has to be 
written as ‘rect’ to draw a rectangle on the plot; the 
coordinates of the rectangle are specified with xmin, 
xmax, ymin, and ymax arguments, all of which should 
be from 0 to 1. Their border color and filling color 
can also be specified. In this example, both of these 
rectangles have no filling color (fill = NA) but have 
different border colors at different locations (set with x 
and y inputs). They span areas of multiple subplots, 
demonstrating that users have full control over aesthet-
ics. Outputs from sm_put_together() and sm_add_
legend() are treated as a single layer of ggplot2 with 
a normalized coordinate from 0 to 1, so users can also 
use functions from third-party packages to perform par-
ticular types of annotations:

# Figure 8 - Add annotations of shapes
composite_plot2b <- composite_plot2 + # 

Composite plot with legend
annotate(“rect”, # Rectangle 1
xmin = 0.23, xmax = 0.63, ymin = 0.54, 

ymax = 0.57, fill = NA,
color = “#636262”, linewidth = 0.8

) +
annotate(“rect”, # Rectangle 2
xmin = 0.56, xmax = 0.93, ymin = 0.22, 

ymax = 0.25,
fill = NA, color = “#b7729a”, linewidth 

= 0.8
)

Finally, the final figure is stored in the object com-
posite_plot2b, which is then saved as an image using 
ggsave() with defined width and height of the com-
posite figure (Fig. 8):

# Figure 8 - Save the composite graph as a 
vector file

ggsave(“composite_plot.pdf”, 
composite_plot2b,
width = 18, # inches
height = 16.5

)

Through these examples, I have shown that the work-
flow for complex data visualization in ggplot2 can be 
structurally linear, with its clear beginning and resolution. 
In addition, the examples have illustrated that the limita-
tions of how users can allocate different subsets of data 
to distinct subplots and dynamically control the aesthetics 
are not determined by what ggplot2 and its third-party 
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packages are capable of but by their own ability to apply 
the programmatic approach using the lapply() function. 
I hope that this will empower readers to programmatically 
perform subplotting in creative and limitless ways. For 
the summary of the tutorial, see Table 1.

Discussion

In this tutorial, I have demonstrated how smplot2 can 
improve the user experience for data visualization using 
ggplot2 in coding both standalone and composite plots. 
Specifically, the package can be useful for both begin-
ners who wish to visualize their data with elegant aes-
thetics and advanced users who wish to structure their 
workflow for drawing composite figures with program-
matic approaches and extend their level of customiza-
tion. In the long term, the package can provide users a 
flexible and programmatic approach of plotting data that 
could yield more diverse, expressive, and powerful visu-
alizations across different fields, including psychology 
and human neuroscience.

Key advantages of smplot2

The smplot2 package can provide benefits to both entry-
level and advanced R users.

To begin with, a major advantage of smplot2 for 
incoming users, as noted by a recent review from a 
group of clinicians (Gandhi et al., 2024), is that it flattens 
the learning curve of ggplot2 (Item 1 in Table 2). The 
visualization functions are flexible, and their aesthetics 
have been optimized for the general format of scientific 
journals (Min & Zhou, 2021). More than 300 reproducible 
examples are provided in the documentation page 
(https://smin95.github.io/dataviz), so users can freely 
use and modify these codes for their own purposes. In 
addition, the codes of the package have been reviewed 
for quality and stability across different computing sys-
tems by CRAN. Some of the functions that users from 

eclectic fields and levels of experience have used are 
raincloud plots (Chen et al., 2023; Gómez-Robles et al., 
2024), regression analyses (Hamad et  al., 2024; Ilyés 
et al., 2024), and forest plots (Grobler & Kramer, 2023) 
in both standalone and composite forms.

For users with working knowledge of R and ggplot2, 
smplot2 has potential to affect how they perform com-
plex and sophisticated data visualizations. Specifically, 
it provides key functions for them to integrate the prac-
tices of data visualization using ggplot2 and the program-
matic approach because smplot2 overcomes the limited 
flexibility of aesthetics at the level of composite figures 
in ggplot2. That is, it provides a complete, flexible, and 
linear workflow for combining multiple ggplot2 outputs 
into a composite plot. It also integrates the programmatic 
approach, which can generate multiple ggplot2 outputs, 
into the visualization pipeline by handling different 
(nested) structures of list objects from lapply() func-
tions or other methods (e.g., map()) that are compatible 
with ggplot2. Furthermore, it enables users to adjust mar-
ginal space and annotate both within and across subplots 
in any form after a composite plot has been constructed, 
encouraging users to apply the programmatic approach 
rather than to create each plot separately. Therefore, it 
will motivate users to search for solutions within their 
scripts rather than find third-party packages that resolve 
issues in plotting. In sum, the package has potential to 
empower users by allowing them to create more custom-
izable, dynamic, and expressive figures; promoting the 
reproducibility of complex visualization routines; and 
linearizing the workflow of visualizing a composite plot.

Numerous packages, such as ggfortify (Tang et  al., 
2016), ggstatsplot (Patil, 2021), and GGally (Schloerke 
et al., 2021), have been developed to allow users to eas-
ily plot data using different types of graphs in a few lines 
of codes (shortcut functions; Item 2 in Table 2), thereby 
extending the functionalities of ggplot2 and flattening 
the steep learning curve for beginners. There are also 
packages, such as grid, patchwork, and gridExtra, that 

Table 2. Contributions of smplot2

Feature ggplot2 without smplot2 smplot2 matplotlib

1. Learning curve Moderate Flat Steep
2. Shortcut functions for drawing various types of plots Yes Yes Yes
3. Composite plots (from multiple ggplot2 objects) Yes Yes Yes
4. Programmatic approach for plotting Not ideal Ideal Ideal
5. Control for the aesthetics of the combined figure Some Yes Yes
6. Legend addition to the combined figure Some Yes Yes
7. Annotations in the combined figure Some Yes Yes
8. Linear process of subplotting No Yes Yes

Note: Although there are many other functionalities in ggplot2 and third-party packages, these are not mentioned here 
because they are not relevant to smplot2. This table applies to instances when multiple ggplot2 objects (outputs) are 
combined into one composite plot rather than when a faceted plot is generated as a single ggplot2 object.

https://smin95.github.io/dataviz
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provide functions for users to create composite figures 
in ggplot2 in various layouts from combining discrete 
ggplot2 objects (Item 3 in Table 2). This approach has 
been widely used so that users can achieve a maximum 
flexibility of aesthetics of the combined figure (see Fig. 
1). Nevertheless, they do not offer significant versatility 
for users after subplots (multiple ggplot2 objects) have 
been combined into a composite plot, thereby encourag-
ing users to create plots separately and shirking away 
from applying programmatic practices (Item 4 in Table 
2). For instance, after multiple ggplot2 objects are com-
bined into one form, controlling the positions of legends 
and annotations and extent of margin between subplots 
in the combined figure becomes more difficult (Items 
5–7 in Table 2), a task that can be easily performed in 
Python’s matplotlib. This has made users implement 
practices that go against the principles of open science, 
such as using a vector graphics software (e.g., Adobe 
Illustrator) to annotate the final figure generated from 
R. These restrictions can now be lifted with smplot2, 
which linearizes the workflow for complex data visual-
izations (Item 8 in Table 2) and elevates the level of 
customization for aesthetics in situations in which users 
want to stitch multiple ggplot2 objects together to con-
struct a composite plot.

R or Python?

The dispute about which of ggplot2 and matplotlib is 
better for data visualization has been ongoing for some 
time (Ozgur et al., 2017). A well-known plotting package 
that complements matplotlib, seaborn (Waskom, 2021) 
has captivated a wide user base in Python with its beauti-
ful aesthetics and shortcut functions for plotting. The two 
libraries (seaborn and matplotlib) embrace the program-
matic approach, requiring users to apply iterations and 
conditional statements to plot data. Although this steep-
ens the learning curve for users, it increases flexibility 
for aesthetics, allowing users to dynamically control each 
component of the figure. A comparable library with mat-
plotlib in R is ggplot2, which is convenient for plotting 
different types of graphs without the requirement for 
users to understand concepts of programming, such as 
loops and functional methods, primarily because of its 
layered approach. This simplicity and the fact that ggplot2 
can generally reproduce figures from matplotlib with 
fewer lines of code have expanded its user base rapidly 
(see Fig. 1). However, this layered approach comes at a 
cost because it hinders users from controlling the aesthet-
ics using the programmatic approach. Although ggplot2 
can be superior in many aspects of visualizations to mat-
plotlib, notably for concisely plotting different types of 
graphs with its declarative syntax, its design can compli-
cate the workflow for users when it comes to subplotting 

and creating composite figures, leaving Python’s matplot-
lib slightly more suitable for performing complex visu-
alizations (for their comparisons, see Table 2).

Throughout the tutorial, I have compared Python’s 
matplotlib and R’s ggplot2 closely to demonstrate that 
the gap between ggplot2 and matplotlib has been mini-
mized with smplot2 in the realms of subplotting and 
flexibility. With the arrival of smplot2, it is now possible 
to linearize the process of subplotting with its clear start-
ing and ending points because the package integrates 
the interface of ggplot2 and the programmatic approach.

Why use the programmatic approach?

So far, the programmatic approach has not been ideal 
in ggplot2 because it creates various ggplot2 objects that 
need to be joined together using other packages. Unfor-
tunately, the level of aesthetic control decreases steeply 
from when a plot is built as a single ggplot2 output to 
when multiple outputs are combined into a composite 
figure, encouraging users to generate each subplot sepa-
rately. However, in this tutorial, I have demonstrated the 
efficiency of the programmatic approach with three 
examples using smplot2.

I support this plotting method for several reasons. 
First, complex data visualizations, such as composite 
plots, can be performed concisely. Second, it increases 
code readability and reproducibility because the pipeline 
remains very similar regardless of the number of variables 
or lapply() functions. Third, it lifts aesthetic limitations 
of composite plots by integrating the native R program-
ming practices with ggplot2’s declarative syntax.

For example, users can create a complex composite 
plot, such as a lower triangular matrix form, without 
relying on external packages. They can use lapply() 
function to create empty panels in specific panels and 
then combine them using sm_put_together(). The 
panels will be arranged in a triangular layout. To create 
an empty plot, users can type ggplot(NULL) + sm_
common_legend() (see examples in Chapter 7 of the 
documentation webpage), which has no aesthetic map-
pings (no legend). After creating a composite plot with 
sm_put_together(), users can also add annotations 
in any forms at any coordinates within the composite 
figure using the layered approach of ggplot2. In sum-
mary, smplot2’s programmatic approach with lapply() 
can empower users to perform sophisticated visualiza-
tions with ggplot2.

Closing remarks

In this tutorial, I have introduced smplot2, an R package 
that provides a structured workflow for plotting by inte-
grating a programmatic approach and visualization and 
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layout functions for advanced data visualizations. The 
defaults of the plots generated by the package are simple 
and minimalistic and have also been optimized for sub-
plotting so that individual components of the figure are 
still clearly visible in a composite plot. In addition, the 
functions introduce a linear process of creating a com-
posite figure by giving users full control of aesthetics at 
multiple stages of plotting in ggplot2. I hope that the 
package can encourage more users to use R as part of 
their visualization routines.
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